Eleanor Frajka-Williams

Eleanor Frajka-Williams

Professor of Ocean Dynamics in a Changing Climate

Universität Hamburg

I am a physical oceanographer who uses ocean observations to investigate ocean dynamics and circulation in a changing climate, and the leader of the Experimental Oceanography working group at the Institute of Oceanography, Universität Hamburg. I have a particular interest in problems spanning scales (from micro- to large-scale) or spheres (biogeosphere, cryosphere, atmosphere), and in methods that leverage traditional observations with new platforms and satellite data.

Interests
  • Ocean dynamics in a changing climate
  • Observational methods and technology
Education
  • PhD in Physical Oceanography, 2009

    University of Washington

  • MSc in Applied Mathematics, 2009

    University of Washington

  • MSc in Oceanography, 2005

    University of Washington

  • AB in Applied Mathematics, 2002

    Harvard University


Publications

  1. (2024). Turbulent Vertical Velocities in Labrador Sea Convection. Geophys. Res. Lett..

    PDF Cite DOI

  2. (2024). Wind forcing controls on Antarctic Bottom Water export from the Weddell Sea via bottom boundary layer processes. Journal of Geophysical Research.

    PDF Cite DOI

  3. (2023). Should AMOC observations continue: how and why?. Phil Trans A.

    PDF Cite DOI

  4. (2023). Observed mechanisms activating the recent subpolar North Atlantic Warming since 2016. Phil Trans A.

    Cite DOI

  5. (2023). Cessation of Labrador Sea Convection Triggered by Distinct Fresh and Warm (Sub)Mesoscale Flows. J. Phys. Oceanogr..

    PDF Cite DOI

  6. (2023). Climate change impacts on ocean circulation relevant to the UK and Ireland. Marine Climate Change Impacts Partnership.

    PDF Cite DOI

  7. (2022). The evolution of the North Atlantic Meridional Overturning Circulation since 1980. Nature Reviews Earth & Environment.

    PDF Cite DOI URL

  8. (2022). Dissipation of mesoscale eddies at a western boundary via a direct energy cascade. Scientific Reports.

    PDF Cite DOI URL

  9. (2022). Climate-Relevant Ocean Transport Measurements in the Atlantic and Arctic Oceans. Oceanogr..

    PDF Cite DOI URL

  10. (2022). Kinetic Energy Transfers between Mesoscale and Submesoscale Motions in the Open Ocean’s Upper Layers. J. Phys. Ocean..

    PDF Cite DOI URL

  11. (2021). A dynamically based method for estimating the Atlantic meridional overturning circulation at 26°N from satellite altimetry. Oc. Sci..

    PDF Cite DOI URL

  12. (2021). Mixing and transformation in a deep western boundary current: A case study. J. Phys. Ocean..

    PDF Cite DOI URL

  13. (2021). Revisiting AMOC transport estimates from observations and models. Geophys. Res. Lett..

    PDF Cite DOI URL

  14. (2020). Mesoscale eddy dissipation by a zoo of submesoscale processes at a western boundary. J. Geophys. Res..

    PDF Cite DOI URL

  15. (2020). Technicalities: Exploring the Labrador Sea with autonomous vehicles. The Journal of Ocean Technology.

    PDF Cite URL

  16. (2020). Breaking of internal waves and turbulent dissipation in an anticyclonic mode water eddy. J. Phys. Ocean..

    PDF Cite DOI URL

  17. (2020). Atlantic meridional overturning circulation and associated heat transport. Bull. Amer. Meteor. Soc..

    PDF Cite DOI URL

  18. (2020). Detectability of an AMOC decline in current and projected climate changes. Geophys. Res. Lett..

    PDF Cite DOI URL

  19. (2020). Pending recovery in the strength of the meridional overturning circulation at 26°N. Oc. Sci..

    PDF Cite DOI URL

  20. (2019). Atlantic Meridional Overturning Circulation: Observed Transport and Variability. Frontiers in Mar. Sci..

    PDF Cite DOI URL

  21. (2019). Phased response of the subpolar Southern Ocean to changes in circumpolar winds. Geophys. Res. Lett..

    PDF Cite DOI URL

  22. (2019). Model derived uncertainties in deep ocean temperature trends between 1990--2010. J. Geophys. Res..

    PDF Cite DOI URL

  23. (2019). Using GRACE and in situ bottom pressure recorders to evaluate external transports at 26°N. J. Geophys. Res..

    PDF Cite DOI URL

  24. (2019). Loop Current variability as trigger of coherent Gulf Stream transport anomalies. J. Phys. Ocean..

    Cite DOI URL PDF (accepted)

  25. (2019). OceanObs19: OceanGliders: a component of the integrated GOOS. Frontiers in Marine Science.

    PDF Cite Project DOI

  26. (2019). Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. PNAS.

    PDF Cite DOI URL

  27. (2019). Structure and variability of the Antilles Current at 26.5°N. J. Geophys. Res..

    PDF Cite DOI URL

  28. (2018). Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves. Nature Comm..

    PDF Cite DOI URL

  29. (2018). Annual cycle of turbulence estimated from Seagliders. Geophys. Res. Lett..

    Cite DOI URL PDF (accepted)

  30. (2018). Variability of the Ross Gyre, Southern Ocean: drivers and responses revealed by satellite altimetry. Geophys. Res. Lett..

    PDF Cite DOI URL

  31. (2018). The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett..

    Cite DOI URL

  32. (2018). Coherent circulation changes in the Deep North Atlantic from 16°N and 26°N transport arrays. J. Geophys. Res..

    PDF Cite DOI URL

  33. (2018). The Accuracy of Estimates of the Overturning Circulation from Basin Wide Mooring Arrays. Prog. Oceangr..

    PDF Cite DOI URL

  34. (2018). Wind-driven transport of fresh shelf water into the upper 30m of the Labrador Sea. Oc. Sci..

    PDF Cite DOI URL

  35. (2017). Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. Scientific Reports.

    PDF Cite DOI URL

  36. (2017). Observed basin-scale response of the North Atlantic meridional overturning circulation to wind stress forcing. J. Clim.

    PDF Cite DOI URL

  37. (2016). Greenland Melt and the Atlantic Meridional Overturning Circulation. Oceanogr..

    PDF Cite DOI URL

  38. (2016). Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Env. Res. Lett..

    PDF Cite DOI URL

  39. (2016). Major Variations in Sub-Tropical North Atlantic Heat Transport at Short (5 day) Timescales and their Causes. J. Geophys. Res..

    PDF Cite DOI URL

  40. (2016). Compensation between meridional flow components of the Atlantic MOC at 26°N. Oc. Sci..

    PDF Cite DOI URL

  41. (2016). Generation of Internal Waves by Eddies Impinging on the Western Boundary of the North Atlantic. J. Phys. Ocean..

    Cite DOI URL

  42. (2015). Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic. Environmental Science Technology.

    PDF Cite DOI URL

  43. (2015). Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceangr..

    Cite DOI PDF (accepted) URL

  44. (2014). Sustaining observations of an unsteady ocean circulation. Phil. Trans. Royal Soc..

    PDF Cite DOI URL

  45. (2014). Vertical structure of eddies and Rossby waves and their effect on the Atlantic MOC at 26.5°N. J. Geophys. Res..

    PDF Cite DOI URL

  46. (2014). A new index for the Atlantic meridional overturning circulation. J. Clim.

    PDF Cite DOI URL

  47. (2014). Seasonal to interannual variability in density around the Canary Islands and their influence on the AMOC at 26°N. J. Geophys. Res..

    PDF Cite DOI URL

  48. (2014). The observed North Atlantic MOC, its meridional coherence and ocean bottom pressure. J. Phys. Ocean..

    PDF Cite DOI URL

  49. (2014). Horizontal stratification during Deep convection in the Labrader Sea. J. Phys. Ocean..

    PDF Cite DOI URL

  50. (2014). Observed decline of the Atlantic meridional overturning circulation 2004 to 2012. Oc. Sci..

    PDF Cite DOI URL

  51. (2013). Atlantic MOC slowdown cooled the subtropical ocean. Geophys. Res. Lett..

    PDF Cite DOI URL

  52. (2013). Atmosphere drives observed interannual variability of the Atlantic meridional overturning circulation at 26.5N. Geophys. Res. Lett..

    PDF Cite DOI URL

  53. (2013). Observed and simulated variability of the AMOC at 26°N and 41°N. Geophys. Res. Lett..

    PDF Cite DOI URL

  54. (2013). Eddy impacts on the Florida Current. Geophys. Res. Lett..

    PDF Cite DOI URL

  55. (2012). Observed Interannual Variability of the Atlantic MOC at 26.5°N. Geophys. Res. Lett..

    PDF Cite DOI URL

  56. (2011). Determining Vertical Velocities from Seaglider. J. Atmos. Ocean. Tech..

    PDF Cite DOI URL

  57. (2011). Variability of Antarctic Bottom Water at 24.5°N in the Atlantic. J. Geophys. Res..

    PDF Cite DOI URL

  58. (2011). Monitoring the Atlantic meridional overturning circulation. Deep Sea Res. II.

    PDF Cite DOI

Chapters

  1. (2022). New technological frontiers in ocean mixing. Ocean Mixing: Drivers, Mechanisms and Impacts.

    Cite DOI

  2. (2019). Topographic Eddies. Encyclopedia of Ocean Sciences.

    Cite DOI

Magazine

  1. (2020). Equity at sea: Gender and inclusivity in UK sea-going science. Ocean Challenge.

    PDF Cite URL

  2. (2009). The Pattullo Conference: Building Community Through mentoring. Oceanography.

    PDF Cite DOI URL

Preprints

  1. (2018). Fast response of deep ocean circulation to mid-latitude winds in the Atlantic. Geophys. Res. Lett. (rejected).

    PDF

  2. (2014). Bispectra of Internal Tides and Parametric Subharmonic Instability. ArXiv.

    PDF Cite DOI URL

  3. (2004). Convection in a Fluid Loop. Proceedings of the WHOI Geophysical Fluid Dynamics program.

    PDF Cite URL