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Abstract

Sandstrém’s conjecture states that a closed steady circulation can only be maintained in
a fluid body if the heating is applied at a lower level than the cooling. In the ocean this has
been taken to mean that there can not be a purely buoyancy-driven circulation since the pri-
mary sources of heat and salt are applied at the surface. Using the one-dimensional fluid loop
of Welander with boundary condition of temperature relaxing to warm and cold at the same
geopotential, we find that Sandstrdm’s conjecture holds; circulation and horizontal heat trans-
port all vanish as the Rayleigh number R — o (the limit relevant for the ocean). However,
if we specify fixed temperature flux boundary conditions, then contrary to Sandstrém’s conjec-
ture, circulation does not vanish as R — co. Thus Sandstrom’s conjecture is sensitive to the
particular choice of boundary conditions specified. In the case of the ocean, where salinity and
sensible heat also play a role in forcing the system, it is not clear that fixed temperature rather
than fixed flux boundary conditions at the surface are appropriate.

This system of horizontal convection in a loop is stable, but becomes chaotic as the heat
sources are rotated from horizontal to vertical positions (heating at the bottom and cooling
at the top). We determine the orientation of the heating and cooling at which this transition to
chaos occurs. We also show how the strength of the circulation responds to different positioning
of heating and cooling.

1 Introduction

Oceanographers have long debated whether or not there can exist a purely buoyancy-driven circu-
lation in the ocean. Roots of the discussion trace back at least as far as J.W. Sandstrom in 1908
who, assuming the ocean circulation worked like a heat engine, concluded that there cannot exist a
circulation unless the heating occurs below the cooling, a result sometimes known as Sandstrom’s
Theorem. We will call it Sandstrdom’s conjecture. The statement has since been formalized to in-
clude effects of friction and viscosity, which Sandstrom did not consider, and can be stated as

Sandstrom’s Conjecture: “If a viscous and diffusive fluid is nonuniformly heated from
the same level then in the limit Kk — 0 with v/k fixed, the motion in the fluid also
disappears,” (1).

Oceanographers have inferred from Sandstrdom’s conjecture that turbulent mixing rather than buoy-
ancy drives the global conveyor belt (meridional overturning circulation) and that there must be a
mechanical energy source to drive the raising of cold water such as wind or tides (2). Then the
meridional overturning circulation is just a salt and heat conveyor belt riding on the wind- and
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Figure 1: The story: A picture of the global ocean circulation. The wind-driven gyres are near the
surface, deep water formation (DWF) at the poles. Mixing due to wind stress and tidal dissipation
is required to bring heat down to the abyss to stratify the abyssal ocean. If you remove the mixing,
the abyss will fill up with cold water and there will be no circulation.
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Figure 2: Convection in a box with heating and cooling sources placed at different levels. Adapted
from Defant (4).

tidally-driven circulation (3). Figure 1 shows the ocean circulation with the wind-driven gyres at
the top, with deep convection at the poles closed by interior mixing. In the absence of this mixing,
Munk and Wunsch say the ocean would just fill up with cold water and have a very shallow, warm
circulation near the surface (2).

Paparella and Young (2002) examined horizontal convection in a 3-D ocean with fixed temper-
ature boundary conditions (5). They showed that dissipation vanishes as diffusivity vanishes using
the maximum extremum principle which they contended supports inferences derived from Sand-
strbm’s conjecture, in particular that, if the ocean were driven purely by surface heating, then one
wouldn’t see the observed small-scale turbulence. However, their arguments do not eliminate the
possibility of an ocean circulation that is driven by surface heating.

Using energetics, they showed that, in the steady state, energy is input to potential energy from
mixing given by the term K (b;), then converted to kinetic energy by the vertical flux of buoyancy
(wb) and eventually lost to internal energy through mechanical energy dissipation € where in all
cases (-) represents total ocean averages. In steady state, the global conversion terms between
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different types of energy are
€= (wh) =k (by). 1)

Averaging mixing K (b;) over z they write,

K
€< H /(btop — bpottom)dxdy . @)

Applying fixed temperature boundary conditions, the maximum extremum principle implies that the
integral on the right-hand side is bounded by a constant Ab, and they conclude that € scales with the
diffusivity K. This result, that € vanishes, is their anti-turbulence theorem.

However, using calculus of variations, one can show that globally averaged velocity is bounded
by the gradient in velocity times a constant prefactor,

2
(luf?) < 2 (0uP) @

where they considered the ocean periodic in both horizontal directions with period L. Since € =
v (|Oul?) then for circulation,
n _ 2L%2k
<‘U‘ >§ﬁ;Ab- (4)
Keeping the Prandtl number v/k fixed, as Kk — 0, then <|u|2> < const and Paparella and Young
(2002) neither confirms nor denies Sandstidim’s conjecture.

In this paper, we revisit the idea of a buoyancy driven circulation in a simple 1-D thin fluid
loop forced by nonuniform heating and two types of boundary conditions: a temperature relaxation
boundary condition and a fixed buoyancy flux boundary condition. In 82 we describe the fluid loop
formulation and the energetics and form of solutions in the system. In 83 we examine the behavior
of steady state fluid flows in the loop subject to heating and cooling at the same geopotential, as well
as implications of these solutions for Sandstrom’s conjecture. In 84, we look at type 111 convection
where heating is applied above cooling, and in 85 we look at type | convection where heating is
applied below cooling. In this configuration, we find time dependent solutions including periodic
orbits, periodic doubling, and chaos-like behavior. Still, we are able to bound quantities with oceanic
import, like mechanical energy dissipation and circulation strength. In section 86, we summarize
our conclusions, mention a revision of Sandstrom’s conjecture which is true, but does not have the
practical applications of Sandstrom’s original conjecture. Finally, we make a few brief comments
about what all this means for the global ocean circulation.

2 Fluid Loop formulation

First introduced by Malkus, Howard and Welander (6; 7; 8), the 1-D fluid loop is one of the simplest
systems in which to analyze convection. The single dimension of the system is azimuthal, as a result
of the thin loop approximation—that the radial thickness of the loop is vanishingly small, and there
is no variation in the radial direction. Here, the system is forced by heating and cooling around the
loop, with no net heating or cooling. We will also hold the Prandtl number constant.

In our loop, with radius a, vg is the azimuthal velocity, Q is the angular velocity, and angle ©
is defined positive in the counterclockwise direction as shown in Figure 3. The loop is oriented
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z=-asin®

Figure 3: Fluid loop coordinate system and symbol definitions.

vertically so that the z-direction is acos® and buoyancy acting in the z-direction has component
bcos® in the azimuthal direction.
Given this formulation, we may write the velocity of the the fluid as

Love
aoo O’
vg =aQ(t) . (5)

The buoyancy equation is

@_'_V_G@_K (—)Z_b_’_}@_g_i@ (6)
ot rae \or2 rar r2 r2902
We may define our boundary conditions at the inner and outer edges of the thin loop as
u=0 at r_,r_, @)
Kbe|r™ = y(b" —b)+F(6) , (8)
where the sources are
b* =gcos(6+X) , 9)
F(08) = Focos(8+X) - (10)

with zero azimuthally averaged forcing, necessary to be able to consider steady states of the system.
In all cases below, we will consider x € [—T11,17. Integrating the buoyancy equation (6) in the radial
direction and applying boundary condition (8) gives,

ob ob

5t T Q5 =Y —D)+F(8). (11)

The momentum equation in the radial direction is

ou; ou  vedu, Vv  1lap 0%u; 10u, u  1d% 2 dvg
o Trae v par e Trar 2t ) 2
and for a very thin loop, viscosity dominates in the radial direction, then
0%y,
a2~ 0, (13)
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Figure 4: (a) Horizontal convection in the loop (x = 0). The location of heating maybe thought of as
the equator in the ocean, and the location of cooling as the poles. (b) Rayleigh-Bénard convection
in the loop (x = 90). White shading indicates heating; dark shading indicates cooling.

and using the boundary condition (7),
ur=0. (14)

Then the momentum equation in the azimuthal direction becomes

5 2
dvg  Vedvg 1 0p <a Vo 1dve Vo 10 VB) +bcos@. (15)

3t "8 rpoe o2 "roar r2 r2ge?

From equation (5), we have no variations in velocity or pressure in the azimuthal direction, then
integrating in r and 6 we have

0Q 1

— = -nQ. 1

i Zm/bcosede n (16)
Given these sources, when x = 0 we have heating and cooling applied at the same geopotential

level as shown in Figure 2. When x < 0, heating is applied above cooling as shown in Figure 2.

When x > 0, we have heating applied below cooling in the loop. We will consider these three cases

of convection in §3-5.

2.1 Energetics

In this system, kinetic and potential energy are given by

1
KE = EaZQ2 , PE =acos6b. (17)

By taking vg - (momentum) and integrating around the loop, we can write an evolution equation for
kinetic energy as
(KE), = —aQ (bcos8) —na®Q? (18)
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where (-) = %If-de. On the right hand side, the first term is the vertical buoyancy flux, the con-
version term between kinetic and potential energy, analogous to (wb) in the cartesian coordinate
system, and the second term is the mechanical energy dissipation €.

The evolution equation for potential energy is derived by deriving in time a (bcos ),

(PE); :aQ(bcose>+ay<bsine>+g(yg+Fo)sinx. (19)

The first term in (19) is again the conversion term between Kkinetic and potential energy. The second
term is the source of potential energy through mixing, analogous to (kb,) in the cartesian coordinate
system, and the third term representing sources of potential energy through external heating and
cooling.

The boundary conditions add no net buoyancy to the system, so the long-time averages of the
energy equations (18) and (19) vanish, and we can write

na?Q2 = aQ (bcosH) :ay<bsin6>+g(vg+Fo)sinx. (20)
where * = lim1_« % fOT -dt, the long-time average.

Horizontal Convection (X = 0)

For horizontal convection, equation (20) becomes

na?Q2 = aQ (bcosB) = ay(bsin®) ,
which is analogous to Paparella and Young’s statement that
€= (wh) =k (by) .

However, the same arguments that they used to bound dissipation by a constant times diffusivity
do not hold in this case. In particular, the maximum extremum principle no longer applies and one
cannont bound (b;) nor ay(bsin®) by a constant, so it is not immediately obvious that the anti-
turbulence theorem should hold.

Heating above cooling (x < 0)

In the case of heating above cooling, equation (20) becomes

na?Q2 = aQ (bcosB) = ay(bsin®) — g(yg +Fo)|sin] .

Added buoyancy through either the relaxation temperature or fixed flux boundary condition repre-
sents a loss of potential energy to drive the circulation.

Heating below cooling (X > 0)

For heating below cooling, we have

na?Q2 = aQ (bcosB) = ay(bsin @) + g(yg +Fo)|sin] .

and the buoyancy sources represent a source of potential energy available to drive circulation.
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2.2 Solutions for b

Since we are considering solutions in a fluid loop, the buoyancy solution must necessarily be peri-
odic. We can construct the general solution of buoyancy in our equations as an infinite sum of sine
and cosine modes,

b(t,0) = Z Sn(t)sin(nB) +Cp(t) cos(nd) . (21)
n=1
where Sy and Cp, are the amplitudes of the nth mode of buoyancy. Using this form of the solution,
equations (16) and (11) become

0Q 1 2

- = —R/Cl(t)cos 806 —nQ, (22)
0S .

a_t” = QCh—YSn+ (Y + Fo) sinx , (23)
oC

= QS0 —Cnt (Vg + Fo) cOSX - (24)

From these equations we can see that only the mode one (n = 1) solutions for buoyancy are coupled
to equation (22), so the full dynamics of the system are captured using only the mode one solution,
irrespective of the form of the forcings, b* and F(6). So dropping the subscript n, we use

b(t,0) = S(t)sin®+C(t)cosO (25)
as our buoyancy solution, and
__C 2 __Cc
Q= —F[a/cos 8d0—nQ = %a naQ, (26)
St =QC — VS + (yg + Fo) sin , (27)
Ci = —QS—\C+ (yg+ Fo) cosy . (28)

are the equations governing our system.

2.3 Nondimensional equations

We rescale the system with the following nondimensionalization,

el

=Q/Y. S=mm R=mg o=n/y,
=W, CZ%, RF = s

—+y

where the * denotes the nondimensional form of a variable. The Rayleigh number is R in our system,
and we write an analogous Rayleigh number Rg for the fixed buoyancy flux term.
We rename the variables
X=0, Z=-C+rsiny,
Y=S, r=R+Rg,

290



which gives us a new system of equations

X =o(Y —X), (29)
Y =rsinxX —Y —XZ +rcosy , (30)
Z=XY-2Z. (31)

When x = 90, this is these are the Lorenz equations,* where heating and cooling are applied at the
bottom and top of the loop respectively. In this system, X is our nondimensional angular velocity,
Y is the sine buoyancy mode amplitude, and Z is the cosine buoyancy mode amplitude shifted and
flipped. More physical quantities which we will consider are the nondimensional dissipation €,
buoyancy flux (wb), and mixing (kb),

=0oX?, (wb)=0XY, (kb)=0Z. (33)

o>

We will also consider horizontal heat transport, Hr = (vgb) = —aQS/2. In nondimensional form,
Hr = —0(XZ +rsinxX) . (34)

In the ocean, heating and cooling are applied at the ocean surface which is equivalent to being
applied at the same geopotential in the loop, at x = 0. We will examine the steady state solutions
for buoyancy and circulation, their stability, and some of the physical quantities in equation (33)
as functions of the Rayleigh numbers defined in our nondimensionalization (82.3). The goal is to
determine the behavior of the solution in the diffusive and nondiffusive limits (small r and large r,
respectively).

We will then proceed to consider convection where the heating is applied from above (at x < 0),
the stability of these steady state solutions and their implications for dissipation and circulation.
Finally we will consider the case of heating applied below cooling, which is the atmospheric analog
since the atmosphere is relatively transparent to the short-wave radiation from the sun, and is heated
by long-wave radiation from the Earth. We will again attempt to say something about the behavior
of dissipation, circulation and horizontal heat transport as functions of the Rayleigh numbers.

The system of equations (29)-(31) has steady solutions, given by the fixed points (X, Yo, Zo)
satisfying

Yo=Xo,
X3+ (1 —rsinx)Xo = rcosy , (35)
Zo=XZ.

If the fixed points are globally stable, then the system has no intrinsic time dependence. If the fixed
points are not stable, the solutions of X, Y, and Z to the full equations (29)-(31) can develop time
dependence.

1The Lorenz system is

X =0(Y —X)
Y=rX-Y-XZ (32)
Z=XY~-bz
where b is the aspect ratio of convective cells, typically taken to be 8/3 in the atmosphere, but for a circular fuid loop,
b= 1asin our case. Tritton showed that the Lorenz equations could be derived for the loop (9).
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Figure 5: Steady state solutions for horizontal convection x = 0 with (a) r = 0.1 and (b) r = 100.
“H” and “C” indicate locations of maximal applied heating and cooling and may be thought of as
equator and polar regions in the ocean. Colors indicate temperature in the steady state solutions
(white hot, dark cold), and arrows indicate the direction and relative magnitudes of circulation for
the two cases, small and large r.

3 Horizontal Convection (x = 0)

For the case of heating and cooling at the same level, also known as horizontal convection, we have
X = 0, for which the fixed point equation (35) becomes

XS+Xo=r. (36)
In the approximation of large and small r, we have the balances

X3~r forrlarge, (37)
Xo~r forrsmall, (38)

which give the scalings for the nondimensional, steady state circulation Xg.

Exact solutions are shown in Figure 5. The locations of maximum applied heating and cooling
are indicated by the letters “H” and “C”, while the colors in the loop show the steady state pattern of
temperature in the loop. The arrows show the magnitude and direction of the resultant circulation.
In terms of the buoyancy solution in equation (25), the applied forcing for horizontal convection
is a cosine mode. For small r (large diffusivity), the resulting steady state pattern of warm and
cool water in the loop is dominated by the cosine mode. The pattern is displaced slightly, however,
with warm water above the location of heating since the circulation displaces some water, and the
diffusion (except in the r = 0 limit) does not fully relax the temperature pattern to the applied
heating. The circulation is small, but nonzero, resulting from the applied torque of the nonuniform
heating, balanced by frictional drag. For large r the pattern of buoyancy is dominated by the sine
mode, 90 out-of-phase, and the circulation carries the heat towards the top of the loop and a position
of smaller potential energy in the system. The patterns of temperature in the steady state shows
the dominance of the forces on the either diffusive, relaxing the temperature pattern to the applied
heating, or convective, reducing the torque by moving the light water to the top and the heavy water
to the bottom.
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3.1 Stability of solutions (X = 0)

Numerical experiments suggested that the steady solutions were reached for any arbitrary condition.
Global stability of a solution means that from any point will move in time towards the steady solution
and won’t stop till it gets there. This can be shown by constructing a Lyaponov functional of a
perturbation (not necessarily small) around the fixed point, then show that the derivative of the
Lyaponov functional is negative. Mathematically speaking, we find a function V (&x) where X =
(X,Y,Z) and X = X+ dx, such that V < 0¥ 3x # 0, and V = 0 only for x = 0. We construct a
Lyaponov functional for this system, not necessarily unique, as

X2
vwnwjn:<§>&56ﬁ+&? (39)

The derivative of V may be rearranged

1. Xg 2 > 1.5, 1 2
§V = — <7> oX< — Oy“ — z62 — E(62—6XX0) , (40)
from which we can see that

V<0, (41)

so solutions to equation (36) are globally stable.

3.2 Circulation, dissipation and horizontal heat transport (x = 0)

In the steady state, Xg is the nondimensional circulation, and nondimensional dissipation and hor-
izontal heat transport are given in the equations in (33). Dissipation and horizontal heat transport
scale with r in the large and small limits as

~or?, Hra~—or® forrsmall, (42)

g§~or?®, Hy~-or forrlarge. (43)

o>

Using the exact solutions of the fixed point equation, the circulation, dissipation and horizontal heat
transport shown in Figure 6a-c, and match these scalings in each limit.

In the dimensional form, these quantities are dependent on the choice of boundary conditions
used, specified as sources in equation (11), or for the nondimensional fixed point equation as,

X3+Xo=R, (44)
XS +Xo=RE . (45)

These two equations are equivalent to setting either F(8) =0, or b* = 0 in the dimensional equa-
tions (23), which we called restoring-like or fixed flux-like boundary conditions, respectively. The
behavior of the dimensional quantities circulation, dissipation and horizontal heat transport

Q?=y’X¢, £=na%Q?, Hr=-0a’Q%. (46)

will be considered as a function of the relaxation timescale, or equivalently diffusivity, y.
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Restoring-like boundary conditions

For restoring-like boundary conditions, we use equation (44) to determine dimensional scalings. In
the steady state, dimensional circulation given by Q = yXg scales as

Qm%—ﬂasy—wo, (47)
1/3
Q~ (%) V3 0asy—0. (48)

So in both the nondiffusive and diffusive limits, circulation vanishes. For dissipation,
g
40

g2a‘o 1/3
sz( 4> v/ —0asy—0. (50)

~
~

yi—0asy— o, (49)

Again, in both limits, dissipation vanishes. Lastly, horizontal heat transport in the steady state,

3
Hr~— ooy % — Oasy— o, (52)
N—% — —
Hy ~ <2)y 0asy——0, (52)

vanishes in both limits. These scalings are shown in Figure 6d-f as indicated by the blue lines.

Fixed flux-like boundary conditions

In the steady state, dimensional circulation given by Q = yXg scales as

Qz%y*2—>0asy—>oo, (53)
SNEE
Q= <%> — constasy— 0. (54)

So in the diffusive limit, circulation vanishes, but in the nondiffusive limit (as y — 0), circulation
remains constant. For dissipation,

2
szi—gy*3—>0asy—>oo, (55)
e~ (F()2a40)1/3y—> Dasy— 0. (56)

In both limits, dissipation vanishes. Horizontal heat transport in the steady state,

Fo 6
HT%—WV —Qasy— o, (57)
F
HTz—<%a> — constasy— 0, (58)
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Figure 6: (a)-(c) Nondimensional scaling of circulation, dissipation and horizontal heat transport
as functions of the Rayleigh number. (d)-(f) Dimensional scaling of the same, as functions of the
relaxation timescale y. Red solid lines indicate solutions using only fixed buoyancy flux boundary
conditions. Blue dashed lines indicate solutions using only the relaxation temperature boundary
conditions.

vanishes in the diffusive limit, but is a constant in the nondiffusive limit. These scalings are shown
in Figure 6d-f as indicated by the red lines.

In summary, In both cases, dissipation vanishes, in agreement with Paparella and Young’s anti-
turbulence theorem, and for the restoring-like boundary conditions, circulation, and horizontal heat
transport vanish in the nondiffusive limit (the oceanic case). However for fixed flux-like boundary
conditions, circulation and horizontal heat transport do not vanish.

3.3 Implications for Sandstrom’s conjecture (x = 0)

1. In the diffusive limit y — oo, the temperature in the steady solution is relaxed to match the
applied forcing while, in the nondiffusive limit y — 0, the solution has warm water at the
top of the loop and cold water at the bottom, towards the limit of minimum potential energy.

2. In the relaxation temperature case (F(08) =0, b* # 0), dissipation, circulation and horizon-
tal heat transport all vanish in the nondiffusive limit (y — 0). This is in accordance with
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Figure 7: Steady state solutions for heating above cooling x = —15 with (a) r = 0.1 and (b) r = 100.
“H” and “C” indicate locations of maximal applied heating and cooling. Colors indicate temperature
in the steady state solutions, and arrows indicate the direction and relative magnitudes of circulation
for the two cases, small and large r.

Sandstrom’s conjecture, that horizontally applied heating cannot drive a circulation.

3. In the fixed buoyancy flux case (b* = 0, F(8) # 0), dissipation still goes to zero in the non-
diffusive limit, but circulation and horizontal heat transport saturate at a constant. When
diffusion does not carry the applied heating to the location of applied cooling, a circulation
must exist to maintain the applied flux. Sandstr 6m’s conjecture no longer applies given fixed
flux boundary conditions. Though heating is still applied horizontally, there is a substantial
circulation in the limit of small diffusion.

4 Heating Above Cooling (x < 0)

For the case of heating above cooling (x < 0), the fixed point equation (35) is
X3+ (L —rsinX)Xo = rcosy ,

with rsiny < 0. In the approximation of large and small r, we have the balances

X3~ 1/tanx forrlarge, (59)
Xo=rcosyx forrsmall, (60)

which give the scalings for the nondimensional, steady state circulation Xo. In particular, in the
large Rayleigh number limit, Xo scales as a constant, dependent on the angle of applied heating.

The solutions to this cubic polynomial are in Figure 7. Again at low Rayleigh number the
circulation is very small and the pattern of heating is very similar to the applied pattern of heating.
The circulation results from the balance between applied torque and drag. For large r, the circulation
is faster, but not as fast as for horizontal convection at the same Rayleigh number.
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Figure 8: A diagram of the global stability of fixed points X in X — r space given by the condition
that rsiny < X§/2 where X depends in X and r. The area in green is globally stable.
4.1 Stability of Solutions (x < 0)

The stability of solutions for heating above cooling is also globally stable, and can be shown using
the same Lyaponov functional as for horizontal convection.

2 o -
V (3%, 8y, 52) = <w> 52 + oY% + 322 . (61)
The derivative of V may be rearranged
1. X§ . s o 1_, 1 )
§V _—(7—r5|nx)6x —dy —562 —5(52—5XX0) , (62)
from which we can see that _
V <0 (63)
as long as
rsiny < %Xg . (64)

Forall X <0, rsiny <0< X§/2 and the condition is met, so the solutions are globally stable. The
regions in X — r space which are globally stable are shown in Figure 8.

4.2 Circulation, dissipation and horizontal heat transport (x < 0)

For x < 0, dissipation and horizontal heat transport scale with r in the large and small limits as

g ~orZcos?y, Hr~—or3cosx forrsmall, (65)
g~ ocot?y , Hr ~ —ocot®yx  forr large . (66)
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Figure 9: (a)-(c) Nondimensional scaling of circulation, dissipation and horizontal heat transport as
functions of the Rayleigh number for heating above cooling (x = —15°). (d)-(f) Dimensional scaling
of the same, as functions of the relaxation timescale y. Red indicates solutions using only fixed
buoyancy flux boundary conditions. Blue indicates solutions using only the relaxation temperature

boundary conditions.

These scalings are shown in Figure 9a-c. All three nondimensional quantities saturate at a constant
(inr, notinx) for large r.

In the dimensional form with the quanitites given by the equations in 46, circulation, dissipation
and horizontal convection scale as shown in Figure 9d-f. For heating above cooling, with either type
of boundary conditions, all dimensional quantities vanish in the diffusive and nondiffusive limits.
There exists a circulation for small y, but it is very weak.

5 Heating Below Cooling (x > 0)

In this section we will consider heating below cooling, starting first with the special case of heating
directly at the bottom of the loop. This case is symmetric across the z-axis and as a result has
different characteristics than the other cases for x > 0. The fixed point equation is, as for x < 0,

X3+ (1—rsinx)Xo = rcosy , (67)
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Figure 10: Fixed point solutions for convection with x = 90 with (a) r = 0.1 and (b) r = 100.
“H” and “C” indicate locations of heating and cooling along the loop. The colors indicate the
temperature pattern for a fixed point in the system. Arrows indicate direction and relative magnitude
of circulation.

but we will find that for certain parameter ranges of x and r, the fixed point solutions are not stable,
so the solution to the full equations is time dependent.

5.1 Rayleigh-Bénard convection (X = 90)

We will first consider the special case of heating at the bottom of the loop (x = 90), called Rayleigh-
Bénard convection for which equations (29)-(31) are the Lorenz equations. For this case, the fixed
point equation is

XE+(1-rXo=0, (68)

with solutions Xg = 0 for all r, and Xg = £+/r — 1 for r > 1. This first solution has warm water at the
bottom with the heat being carried to the top by diffusion alone. Because the heat is applied sym-
metrically about the z-axis, there is no applied torque. As diffusion is decreased (r is increased), the
Xo = 0 solution becomes unstable (at r = 1) and two stable solutions with circulation either clock-
wise or counterclockwise appear. This is called a pitchfork bifurcation. Two fixed point solutions
for small and large r are shown in Figure 10.

Forr = cg—j‘z‘, these two stable solutions become unstable and both simultaneously undergo a
subcritical Hopf bifurcation, where the stable solution becomes an unstable limit cycle. The loca-
tions of the stable and unstable fixed points, and a diagram of the bifurcation is shown in Figure 11.
The pitchfork bifurcation appears as it is called, and the Hopf bifurcations are the two simultaneous
from stable to unstable fixed point. More details on this system the Hopf bifurcations in the Lorenz
system can be found in Drazin (10).

5.2 General Heating Below Cooling (x > 0)

For the general case of heating below cooling (X > 0), there are two qualitatively different behaviors
that may arise in our system, depending on how close ¥ is to the symmetric case of x = 90. For all
X > 0, there is no fixed point solution without circulation since the asymmetrically applied heating
creates a torque on the system which, even in cases of large but finite diffusivity (small r), creates
a nonzero circulation balancing frictional drag. For larger r, this near zero circulation increases
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Figure 11: Bifurcation diagram for convection with x = 90. Solid lines indicate stable fixed points;
dotted lines indicate unstable fixed points. There is a pitchfork bifurcation at r =~ 10 and two Hopf
bifurcationsatr =o(o+4)/(0—2).

DO C

Figure 12: Fixed point solutions for x = 95. “H” and “C” indicate locations of heating and cooling
along the loop. The colors indicate the temperature pattern for a fixed point in the system. Arrows
indicate direction and relative magnitude of circulation.

in magnitude, and two new fixed points appear out-of-nowhere. The appearance of two new fixed
point solutions from nowhere is called a saddle-node bifurcation. For x near 90, one of the new

fixed point solutions is stable and the other unstable. For x further from 90, the two new fixed
points are unstable. This critical angle is approximately Ax = 33, so the region of “x further from

90 is |[x — 90| > 33.

The three stable zolutions for x = 95 are shown in Figure 12. At small r, the near-zero circu-
lation is stable and in the direction of applied torque and is the result of the balance between this
torque and frictional drag. For larger r, the counterclockwise circulation is in the direction of the
torque, so naturally it is larger than the steady state circulation in the opposite direction.

As r increases, the stable clockwise and counterclockwise solutions undergo a Hopf bifurcation,
as in the Rayleigh-Bénard case, but not simultaneously. The circulation contrary to the torque goes
unstable at smaller r that in the other direction. The bifurcation diagram for x = 95 is shown in
Figure 13.

Numerically computing the fixed points and their eigenvalues gives us Figure 14, which shows
the numbers of stable and unstable fixed points in x — r space. The transitions from 1 to 3 fixed
points are saddle-node bifurcations, and the conversion of a stable fixed point to an unstable fixed
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Figure 13: Bifurcation diagram for convection with x = 95. Solid lines indicate stable fixed points;
dotted lines indicate unstable fixed points. There is an imperfect bifurcation near r = 11 and two
Hopf bifurcations near r = 15 and r = 19.

point is a Hopf bifurcation. The curves for the locations of Hopf and saddle-node bifurcations
in X —r space may also be computed analytically from the eigenvalues of the fixed points. The
eigenvalues A of our system are the solutions to the equation, called the characteristic polynomial,

det|A—Al| =0, (69)
where A is the linear stability matrix
-0 o 0
A= [rsinx—2Zp -1 —Xo| , (70)
Yo Xo -1

and 1 is the 3 x 3 identity matrix. The characteristic polynomial is
A4 (042)A%+ (20+1+XE+0(Xo—rsinX))A+0(1+2XZ+Xo—rsiny) =0. (71)

For a Hopf bifurcation, the real parts of two complex conjugate eigenvalues pass through 0.
This is the same as saying that at a Hopf bifurcation, two of the eigenvalues are purely imaginary.
Whether the real parts become positive or become negative determines whether or not the Hopf
bifurcation is subcritical or supercritical. Then the eigenvalues at a Hopf bifurcation may be called
(A1,iw,—iw) giving a polynomial which must be equal to the characteristic polynomial for these to
be eigenvalues of our system. Then we can solve

A=A AN+ ?) = N3+ (04+2)A%+ (20 + 14+ XG +0(Xo — rsinX) )N +0(1+2XE +Xo —rsiny) ,

(72)
or collecting powers of A,
M=-0-2 , (73)
W’ =20+ 14+XE+a(Xo—rsiny) , (74)
M@ = —0(1+2XZ+Xo—rsiny) . (75)
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Figure 14: Bifurcation diagram in X —r space where (s,u) indicates the numbers of stable and
unstable fixed points in each region, solid lines indicate bifurcations and the dotted line is the slice
through r-space of x = 95 for which the bifurcation diagram is shown in Figure 13.

This system of equations may then be solved for Xo(x,r) which is the equation of the Hopf bi-
furcation in x — r space. We must also require that w? < 0 since these are two purely imaginary
eigenvalues.

Similarly, at a saddle-node bifurcation, one eigenvalue passes through zero giving the polyno-
mial

AA=A)A=A2) =N+ (0+2)A% + (20 + 1+ XE +0(Xo — rsinX))A + 0 (1 +2XE +Xo —rsiny) ,
(76)
so the last term must be zero, giving

—0(1+2X2+Xg—rsin) =0, (77)

which may be solves for Xo(X,r), the equation of the saddle-node bifurcation. These curves are
plotted in Figure 14 and precisely define the transitions between numbers of stable and unstable
fixed points.

5.3 Time dependent solutions (x = 45)

Past both Hopf bifurcations, the system has gone completely unstable, so we use an explicit Runge-
Kutta routine in MATLAB to numerically integrate solutions to the system. For the Rayleigh-Bénard
case, which is also the Lorenz case, the system quickly becomes chaotic past the Hopf bifurcations,
though much further in r-space reverts to periodic solutions. For x = 45, we find that the solutions
are initially stable limit cycles and, at higher r, develop period doubling and quadrupling, and
eventually chaos-like behavior as shown in Figure 15. This is indicative of a supercritical Hopf
bifurcation. (In exploring the parameter space near the second Hopf bifurcation for variable ¥, it
appears as though near x = 90, the Hopf bifurcation is subcritical and chaos-like behavior develops
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Figure 15: Phase plots of X and Y after a long time, so the initial transient is discounted. (a) For
r =270, (b) r =575 and (c) r = 1995. These three plots show a stable limit cycle, period doubling
and chaotic-like behavior all from the fluid loop for x = 45.

quickly in r space. Further from x = 90, by about X = 75, stable limit cycles are observed and we
can conclude that the Hopf bifurcations are supercritical.) Given this sort of behavior, we can no
longer explicitly calculate the circulation, dissipation and horizontal heat transport in the system.

5.4 Upper Bound on Circulation and Dissipation (x > 0)

For the case of heating below cooling (X > 0), the system exhibits limit cycles, period doubling
and chaos-like behavior. However, the long-time averages of circulation, dissipation, and horizontal
heat transport can be upper bounded as functions of the Rayleigh number and angle of heating x. In
our nondimensional setup given in 82.3, X is the angular velocity of the fluid. Since we are looking
for an upper bound on the magnitude of circulation in the long-time averages of the system, we will
look for bounds on X2. Following the methods of Pétrélis and Pétrélis (11), we find it convenient to
define

1
EEE(XZ—l—YZ—FZZ) (78)
which has no physical meaning in our system. We also define
P=(o+rsinx)XY , (79)
2 reosx\2 ., récos’x
D = oX +( — ) 47 — (80)

for which E = P — D. Then if we can show that E =0, then P = D and from the long-time average
of equation (29), we know that X2 = XY, a factor in P. So if we can find an upper bound on D, we
will have an upper bound on circulation.
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To show that E = 0, we must simply show that E is bounded. For this we follow the methods of
Doering and Gibbon (12) and construct a functional L which is decreasing for all (X,Y,Z) outside
a finite ellipsoid, which means that all trajectories eventually exist inside this ellipsoid. Defining

Lz%(x+rcosx)2+Y2+(ZfrSinX*l)z, (81)

its time derivative is

1. .
L= —X2—rcosxX —Y2—2Z2+(rsinx+1)Z ,
= 2(X—Hcosx) Y 2(Z rsiny —1) 2X 2Z +2r cos x+2(rsmx+l) .
(82)
Then the time derivative of L is bounded by a multiple of L and a constant term,
1. 1 1 .
ELg—§L+E(rzcosszr(rsmerl)z), (83)
L<—L+2rsinx+2. (84)
Thus outside of the ellipsoid
L=2rsinx+2, (85)

the time derivative of L is negative. Thus all trajectories of X, Y and Z eventually enter this ellipsoid.
Then we have shown that E is bounded and we can look for a bound on circulation,

P D < Do

X2 = —— = . — .
g+ rsiny o-+rsin — o-+rsiny

(86)
The following argument will be to find a small D.

Using the background method of Doering and Constantin (13), we can write every solution as
the sum of a constant background field and a fluctuating part in time:

X(t) = Xp +X(1). (87)

Substituting this into equation (80) and taking the long time average, we can write

D = 2(F (Xp) — Q(Xp,X)) , (88)

where

1
F(Xp) = E((Isz+(Yb—rcos.)(/2)2+Z§), (89)
, L2

— — 90

o 1, 1, 1 . 1
Q(Xp,X) = A%? + §y2+ 522 — Exbz(rsmx —Zp)%— éXbZY

In equation (90) terms have been gathered as

A9 (Zo—rsinx—0)* Y§
2 2 27

. 1 .
L = XpY,2 + (Xprsinx — XpZp + Ercosx)(rsmero—Zb) +0Yp ,
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and Q has been diagonalized in the fluctuating terms with

<>

. . 1
=Y+ (Zp—rsinX — o)X+ Xp(Zp—rsiny) — 5TCOSX .
7= z—Yb(Xb+x) .

In order to bound Dg from above, we must be able to bound Q from below which means that we
need A > 0. For A >0, Q is a upward facing paraboloid in (X,Y,Z)-space so the minimum of Q is
the apex of the paraboloid. If A =0, then we must have L = 0 to avoid singularities in the solution.
Since Q(Xp,X =0) < Q(Xp,X), then

D < Do = 2(F(Xp) — Q(Xp, X = 0)) . (91)

Now we would like to pick an X}, which minimizes Dg. One such solution is

Xp = (%,o,rsinxﬂ:—\/&) 92)
which gives a relatively tight bound on circulation,

. 1_0__r2c0s2x + (rsinx +0—/0)?

X2<_ D0 _ Ao Vop . ( r (93)
o+rsiny rsinx+o
Using this choice of Xy, gives the bounds for heating below cooling of

X2<0(r), (94)
£<0O(or). (95)

These bounds, as well as numerically integrated solutions to the equations are shown in Figures 16.
The bounds are quite good for large Rayleigh number r > o — /0. Solutions for x > 0 have a
much more vigorous circulation than for x < 0, but we are still able to bound the circulation and
dissipation in the system.

Horizontal heat transport may also be bounded by following the same procedure as above, but
letting

P’ = (o+rsinx)XY +rcosxY , (96)
D' =oX?4Y24+22, (97)

Finding a bound for D’ will give a bound for P’ which may then be compared with the bound for P
to give a bound for Y. Then, noting that

Hr = o(rsinxX — XZ) = oY , (98)

a bound for I:E can be found.

The dimensional form of the bounds for circulation and dissipation are shown in Figure 17.
Lines are the bounds for different angles and type of boundary conditions, while the stars in corre-
sponding colors are the values computed from integrating the equations. For small y, equivalently
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Figure 16: Heating below cooling: Linear and log plots of bounds on circulation for different angles
of heating x > 0. The lines are the bounds given in equation (5.4) for x = 90, 67.5, and 45, and the
stars are estimates of the quantities determined by numerically integrating the equations.
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Figure 17: Heating below cooling: Log plots of dimensional bounds on (a) circulation and (b) dissi-
pation, for different boundary conditions (fixed temperature flux in red tones, relaxation temperature
in blue tones) and different angles of heating x > 0. x =90 is a solid line, x = 67.5 is dashed, and
X = 45 is dash-dot. The stars are computed for each x by numerically integrating the equations.

large Rayleigh number, the bounds are quite good, while for larger y the bounds are loose. In the
nondiffusive limit, the circulation does not disappear and in the case of fixed flux boundary condi-
tions, the circulation increases. The dissipation, in the thermal relaxation case, does disappear, but
remains constant in the fixed flux boundary conditions. In either case, the circulation is much more
vigorous than the case of horizontal convection.

6 Conclusions

Though the formulation of convection in a 1-D fluid loop is very simple, the possible solutions
are diverse and complex. In the oceanic case of horizontal convection, or heating and cooling
at the same level, the validity of Sandstrom’s conjecture depends on the nature of the boundary
conditions. In particular, using temperature relaxation conditions as in Paparella and Young, and
most ocean GCMs, Sandstrdm’s conjecture holds: as kK — 0, circulation vanishes. On the other
hand, using fixed buoyancy conditions, even in the limit as diffusivity vanishes, there is a substantial
circulation resulting from the differential heating. If Sandstrdom’s conjecture were based on sound
thermodynamic principles, one would expect it to hold regardless of the nature of the boundary
conditions used.

It may be of interest to note that in fact, a variant of Sandstrom’s theorem does hold under both
thermal relaxation and fixed flux boundary conditions. In the fluid loop, the location that a parcel
experiences heating (at what x the change in potential energy following a parcel is largest) is not
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the same as the location of maximally applied heating. If one considers horizontally “experienced”
heating (from the point-of-view of a parcel of water), then as kK — 0, circulation also vanishes.
This is not of much practical use in the ocean, however.

In the atmospheric analog of heating below cooling, there exist time dependent solutions with a
much more vigorous circulation, though it is still possible to bound the circulation and dissipation
in the system as a function of the Rayleigh number. The circulation clearly does not vanish because
there is a source of potential energy, the only source which, according to Sandstrom’s conjecture, in
the absence of mixing may drive a circulation.

The main point to be taken from all this is that horizontal convection forced with buoyancy
conditions (equivalently temperature and salinity) can still drive a finite circulation in the absence
of diffusivity, given fixed flux boundary conditions. To motivate the relevance of this statement for
the oceans, we note that though sensible heat transfer from the atmosphere to the ocean behaves
as a relaxation temperature condition, latent heat and salinity forcing through precipitation and
evaporation behave like fixed flux conditions. In fact, latent heating of the ocean is more than twice
the magnitude of sensible heating of the ocean, so we would expect fixed buoyancy flux boundary
conditions to be more appropriate.

In a fluid loop, a purely thermohaline circulation can exist in the absence of mechanical energy
input from wind stress or tidal dissipation. It is not clear that a purely thermohaline circulation
cannot exist in the absence of external mechanical energy forcing.
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